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Abstract--An analysis is made of heat transfer from a plate fin, which is cooled by forced or natural 
convection. Approximate expressions are used to relate convective heat flux and temperature in the case of 
laminar and turbulent boundary layer in forced flow and in the case of natural convection in a vertical fin. A 
simple solution procedure is presented to solve conjugated heat transfer composed of conduction in a fin and 
convection from it. Meaningful heat transfer results are obtained when heat transfer of an actual fin is 
compared with an ideal isothermal fin. It was found that one curve is enough to present heat transfer results 

without parameters. 

NOMENCLATURE 

C, constant for natural convection in 
equation (4); 

C, constant for turbulent convection in 
equation (1); 

g, acceleration of gravity; 
k, thermal conductivity of fin; 
kl, thermal conductivity of fluid; 
l, transverse length of fin; 
m, n, constants in equation (1); 
Pr, Prandtl number; 
q, convective heat flux; 
Re, Reynolds number, U o~x/v ; 
s, dummy variable in vertical direction; 
t, fin half thickness; 
T, fin temperature; 
Tw, fin base temperature; 
T ~, free stream temperature; 
U ~, free stream velocity; 
x, vertical coordinate; 
x . ,  dimensionless coordinate for natural 

convection, equation (17); 
X . ,  dimensionless coordinate for forced flow, 

equation (10); 
y, transverse coordinate; 
y . ,  dimensionless coordinate, y/I; 
~t, ~, constants in equation (1); 
t ,  volumetric expansion coefficient; 
v, kinematic viscosity; 
0, dimensionless temperature, 

( T -  T~)/(Tw - Too); 
~b', (/), local and total heat flux of fin ; 
(/);, (~i, local and total heat flux of an ideal 

isothermal fin; 
AT, temperature difference, T -  Too ; 
ATw, base temperature difference, T w -  T~. 

1. INTRODUCTION 

HEAT transfer analysis of extended surfaces with 
different shapes is well known for the case, when heat 

transfer coefficients are given (see e.g. Kern and Kraus 
[1]). Even for a prescribed varying heat transfer 
coefficient solution can be easily obtained numerically. 
In actual practice, however, convective heat transfer 
from a fin and conduction along it can not be solved 
separately, but they are coupled together. The problem 
considered in this paper is schematically shown in Fig. 
1, which presents a plane fin of thickness 2t and 
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FIG. 1. Schematic presentation of the problem: 
coordinate system; (b) temperature approximation. 
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transverse length I. The base surface temperature is 
uniform and equal to Tw and the fin is cooled by a fluid 
at temperature T~. 

The analysis presented in this article deals with heat 
transfer of a plane fin cooled by forced or natural 
convection. In the case of natural convection only a 
vertical fin is considered. For forced convection the 
freestream velocity is equal to U~ and both laminar 
and turbulent boundary layers are included in the 
analysis. 

In the problem considered in Fig. l(a) temperature 
of the fin varies in the transverse direction and also it is 
dependent on x. Convective heat transfer in the flow 
direction could be solved if surface temperature is 
known. Unfortunately, temperature distribution is 
also affected by heat conduction in the fin. Thus weare 
dealing with a complex conjugated heat transfer 
problem, the solution of which can only be obtained by 
solving conduction in the fin together with convective 
heat transfer. 

In this investigation an approximate treatment of 
natural and forced convection is used to relate heat 
flux and temperature. A simple procedure is presented 
to solve the arising complex nonlinear differential 
equation. It is noteworthy that dimensionless heat 
transfer results of forced convection and also those of 

n a t u r a l  convection on a vertical fin are free of 
parameters. 

2. HEAT FLUX DISTRIBUTION FOR ARBITRARY 
SURFACE TEMPERATURE 

First the expressions of heat flux distribution 
resulting from a known arbitrarily varying surface 
temperature are given. These equations are used in the 
forthcoming presentation when the solution 
procedure of conjugated heat transfer in the fin is 
developed. 

Forced convection 
In the case of forced convection it is well known that 

the resulting heat flux corresponding to arbitrarily 
varying surface temperature can easily be obtained 
using an integral method and superposing technique. 
It can be expressed quite accurately lor laminar and 
turbulent boundary layer if Pr > 0.6 as [2] 

q(x) = C ~ Re" Pr" f f [ 1  - (s /x)~]  -~ dT~(s). (1) 

The constants in equation (1) are for laminar 
boundary layer: C = 0.332, m = �89 n = 3 x, y = 3 and a 
= �89 The corresponding values of constants for 
turbulent boundary layer are: C = 0.0296, m = ~, n = 
3, y = ~ and ~ = ~. Integration of equation (1) is easily 
made when surface temperature T s is approximated by 
a series of straight lines as in Fig. l(b) [2]. The 
integrated form of equation (1) needed later is 

q (x )=  c k ~ f f R e ~ P r " { A T o + x  

z do( 5- �9 
i=~ I_ \ x /  

(2)  

In equation (2) ATo is the temperature difference at the 
leading edge of the plate, k~ = (T~ - T~_ i)/(s~ - s~_ 1) 
and 

Natural convection 
In the case of natural convection from a vertical 

surface such a simple method as in forced flow, in 
which case heat flux resulting from a prescribed surface 
temperature could be found, is not possible. 
Fortunately, Raithby and Hollands [3] have 
succeeded in obtaining an approximate equation 
relating surface temperature and heat flux. They used 
the analogy between a condensate film and the inner 
part of boundary layer in natural convection. For  a 
vertical surface with laminar boundary layer their 
result can be written as 

q(x) = ck/I~-- f Pr) AT '/a AT 5/3 dx (4) 

which is applicable for Pr > 0.6. The constant c in 
equation (4) can be calculated very accurately using 
[4] 

0.503 
c = (5)  

[1 + (0.492/Pr)9/16] 4/9" 

In Raithby and Hollands [3] a more complex 
expression than equation (5) is used. In the case of a 
polynomial surface temperature x" the accuracy of 
equation (4) can be compared with the exact one. In 
the case of a constant surface temperature equation (4) 
gives an exact result, but when n > 0 it underestimates 
heat  fluX. For instance, when heat flux density is 
constant (n = ]) it gives the error of 4 ~  with Pr = 1. 

Equation (4) can be easily integrated if the variation 
of temperature distribution is composed of straight 
lines as in forced flow. It gives 

q(x) = ck: Pr 

x A T  s/a A T  / 3 _  ATi_ 1 (6) 
L i = l  

where 

k~ = (AT~ - ATe_ t)/(si - s l-  1)- 

If natural convection boundary layer is turbulent it 
seems that heat transfer is not at least much affected by 
a streamwise coordinate [5, 6]. In that case the 
solution can be obtained by usual methods. 
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3. F O R M U L A T I O N  OF THE M O D E L  
AND SOLUTION P R O C E D U R E  

The energy balance of the fin in the conjugated heat 
transfer problem of Fig. l(a) involves heat conduction 
within the fin in the x- and y-directions and an inflow 
of heat from convective boundary layer. The 
temperature and velocity distributions in the 
boundary layer are three-dimensional. However, the 
problem is simplified by assuming that convective heat 
flux can be described using equation (1) for forced and 
equation (4) for natural convection. This assumption is 
analogous with the treatment of the condensate film in 
Patankar and Sparrow [-7]. Also if the vertical height 
of the fin is substantially greater than the transverse 
length l, the streamwise conduction in the fin is 
negligible compared with the y conduction. With these 
assumptions the thin fin energy balance can be written 
a s  

a2T 
k t ~ y  2 - q(x) = 0 (7) 

where convective heat flux q(x) is governed by 
equation (1) in the case of forced convection and 
respectively by equation (4) for natural convection. 

Equation (7) cannot be solved without employing 
the numerical technique. The first step in the search for 
the solution is to form a finite difference grid of the fin 
and guess the temperature distribution of the fin (see 
Fig. 1). If temperature distribution is approximated by 
straight lines, convective heat flux of the point i, j is 
easily calculated from equation (2) for forced and from 
equation (6) for natural convection. When heat flux 
and temperature are known, the heat transfer 
coefficient can be obtained. Now attention is paid to 
the ith vertical row of the fin. Because heat transfer 
coefficients are known at every point j, a standard finite 
difference technique can be used to calculate the effect 
of heat conduction in the y-direction and obtain a new 
temperature distribution of the ith vertical row. This 
kind of treatment is repeated in every vertical row of 
the fin and as a result a new temperature distribution of 
the fin is obtained. After comparing temperature 
distribution obtained with that of the initial guess, the 
procedure is repeated if deviation is too great. The 
process is repeated until a sufficient degree of accuracy 
is obtained. 

1,0 

4. RESULTS AND DISCUSSION 

The method previously described gives the 
temperature distribution of the fin and also heat 0,6 
transfer rate, which often is the most interesting 
quantity when dealing with extended surfaces. In the 0,~ 
present problem great generality of heat transfer 
results can be achieved by comparing them with those 0,2 
of an ideal isothermal fin whose temperature is 
everywhere uniform and equal to the base temperature 
T w. 

by equation (7). In the case of forced convection it can 
be changed into dimensionless form, which is free of 
parameters, by using nondimensional variables 
defined as 

T -  T| 
0 = - -  (8) 

Tw - Too 

Y (9) y ,  = 

1 k t  x 

X ,  = C kfl  2 Re ~ Pr ~" (10) 

The local heat flux to the fin from the base surface is 
obtained from the temperature distribution. If only the 
other side of the fin is considered the governing 
equation for the local heat flux is 

k t ( 0 T ~  tb'(x) = ~,-~-Y/o" (11) 

The corresponding local heat flux of an isothermal fin 
at the station x is written as 

~(x )  = C kf  Re m Pr" A T J .  (12) 
X 

By using dimensionless variables of equations 
(8)-(10) the local heat flux ratio, if comparing the 
actual fin with the ideal fin, is evaluated using 
equations (11) and (12), with the r3sult 

+2 x (00  (13) 
dp; = *\ey,Jo" 

The overall rate of heat transfer ~b from the base over a 
height from 0 to x is calculated by integrating equation 
(11) 

f ~  (OT~  dx (14) c~ = kt \ oy ]o 

Comparing the actual total heat transfer with that of 
the ideal fin of height x, which is 

dp, = C kf  Re m Pr* AT+ I (15) 
m 

i i i i 1 i i 1 i 

2 ~ 6 I I •  8 I0 

9~ i' 

Forced convection FIG. 2. Local and overall fin heat transfer results. Forced 
The temperature distribution of the fin is governed convection with laminar boundary layer. 
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FIG. 3. Local and overall fin heat transfer results. Turbulent FIG. 4. Heat transfer results for natural convection in a 
boundary layer, vertical fin. 

the ratio ~/~bi using dimensionless variables follows as 

m m rx*  rn ( 0 0 "  ~ 

- - = - - x m - l q ~ l  1 - m  * ; o  xl*-std~*)odX* (16) 

Calculated heat flux ratios from equations (13) and 
(16) are shown in Figs. 2 and 3. Figure 2 presents the 
results for the laminar boundary layer and Fig. 3 for 
the turbulent boundary layer. 

Natural convection 
In the case of natural convection, equation (7) can be 

transformed into a dimensionless form by introducing 
dimensionless variables defined by equations (8) and 
(9) and by using instead of equation (10) a variable 

I( v 2 "~ I ( kt ,~4 
x, =  tg-- is77t  / x. (17) 

The local heat flux is again obtained from equation 
(11). When dealing with natural convection, the local 
heat flux of an isothermal surface at the station x is 

/gift \114 A T~ 14 
q~;(X) = ck$ t~ V r )  ~ I. (18) 

Comparing the local heat flux with equation (18) the 
ratio tk'/tk~ can be expressed using dimensionless 
variable of equation (17) as 

4' 1/, (a0 
x ,  td -~ , )o .  (19) q~--- 

Equation (14) gives the total heat transfer from the 
other side of the fin with a height x. The overall heat 
transfer of an ideal fin is obtained from equation 

4 f g f l  \1  I ,  
~, = ~ckst~TPr) A T  ' / `  xai ' l .  (20) 

Forming the dimensionless ratio tPAbi the final result 

~b 3 1 foX* ( e O ~  dx 
q~--~ = 4xS, :̀  \Oy ,]o  * (21) 

is obtained. The ratio of local flux in equation (19) and 
that of overall heat transfer in equation (21) are plotted 
in Fig. 4. Also in the case of natural convection 
experiments were performed using an aluminium fin 
with a thickness 0.5 mm and which was cooled by air. 
It was found that experimental results were in 
agreement with those of Fig. 4. 

CONCLUSION 

To summarize, the analysis given here predicts heat 
transfer from a vertical plate fin cooled by natural or 
forced convection. Very valuable results are obtained 
by comparing local or total heat transfer with those of 
an ideal isothermal fin and by using dimensionless 
variables. It is found that heat transfer of a fin for 
forced convection with laminar or turbulent boundary 
layer and for natural convection with laminar 
boundary layer can be expressed without parameters. 
Using plotted results of Figs. 2, 3 and 4 actual heat 
transfer of any fin can easily be evaluated. 
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CONVECTION THERMIQUE NATURELLE OU FORCEE SUR UNE AILETTE PLANE 

Resum6--On 6tudie le transfert thermique d'une plaque plane qui est refroidie par convection naturelle ou 
forc6r On utilise des expressions approch6es pour relier le flux convectif et la temp6rature dans le cas de la 
couche limite laminaire ou turbulente en 6coulement fork et dans le cas d'une convection naturelle dans une 
ailette verticale. On pr6sente une proc6dure simple de r6solution pour le transfert thermique coupl6 de 
conduction dans l'ailette et de convection sur elle. Des r6sultats sont obtenus dans la comparaison d'une 
ailette r6elle et d'une ailette isotherme id6ale. On trouve qu'une simple courbe reprdsente correctement les 

rdsultats sans param6tres. 

W,~RMEI~BERGANG BEI FREIER UND ERZWUNGENER KONVEKTION AN EINER 
EBENEN RIPPE 

Zusammenfassung - -  Der W~meiibergang an r dutch erzwungene oder freie Konvektion gekiihlten 
ebenen Rippe wird unlersucht. Zur Verkniipfung des konvektiven Wiirmestroms mit der Temperatur bei 
laminater und turbulenter Grenzschicht in erzwungener Str6mung und bei freier Konvektion an einer 
senkrechten Rippe werden N/iherungsbeziehungen verwendet. 

Zur Behandlung der verkniipften W~metransportvorggnge durch W~irmeleitung in einer Rippe und 
durch konvektiven W~irmeiibergang wird ein einfaches L6sungsverfahren vorgestellt. Der Vergleich des 
Wfirmetransports in einer tatsiichlichen Rippe mit dem in einer ideal isothermen ergibt deutliche 
Unterschiede. Es zeigt sich, dab zur Darstdlung des W~irmetransports eine Kurve ausreicht und dab keine 

Parameter erforderlich sind. 

TEH.rlOO]3MEH IIPH ECTECTBEHHOIT! H BblHY)K~EHHOITI KOHBEKUHH 
HA HJIOCKOM PEBPE 

AUUOTaUNR- AHa~qH3HpyeTCfl TerLrIOO6MeH Ha H.IIOCKOM p e 6 p e ,  KOTOpOe oxaa~rRaeTca FIOCpe,llCTBOM 
BhIHyTK,~eHHOH HJ]H eCTeCTBeHHOH KOHBeKIIHH. YCTaHOBJIeHbl IIpH6JIHTKeHHblC COOTHOLUeHHfl Mexl ly  
KOHBeKTI'IBHhlM TeFl.qOBblM HOTOKOM H TeMnepaTypofi  ~I.aa ,qaMHHapHoFO H Typ6y~eHTHOrO n o r p a -  
HHqHOFO C.qOfl llpH BbIHy)K,~eHHOM TeqeHI'IH H ~JI~l eCTeCTBeHHOH KOHBeKUHH Ha BepTHKaJIbHOM pe6pe .  
Hpe~lcTaBaena npocTan Mero~lnra pacq~Ta conpa,~naoro Tenaoo6Mena, yqmbma~omas Ten~onpoBo~- 
nOCTb pe6pa ~l KOHBeKIU, nO Ha HeM. HoayqeHu Bnaql, IMUe peBy~l, TaTbl riO Terl.qOO6Meny ~J~a cayqaa, 
ror~a Ten~oo6MeH peam, noro pe6pa cpaannBaeTca c I, meanbm, iM H3oTepMnqeCKnM pe6poM. O6Hapy- 
~eHO, '~TO O~IHOfi rpnBOfi 21OCTaTOHHO Jl.rIfl npe,acTaB~eHn~ pe3yJn,TaTOB riO TenJ~OO6Meny 6e3 

napaMeTpoa. 


